Nitrogen Timing and Crop Uptake

Nitrogen Management Research

Dr. Albert L. Sims
University of Minnesota
Northwest Research and Outreach Center
Crookston, Minnesota
Topics I will Cover

- Nutrient Management:
 - A very Complex System
 - It is much more than just putting on some fertilizer!
 - Must have an appreciation of the complexity of plant
 - Must have an appreciation of the complexity of the soil

- I will cover some basic plant physiology

- Nutrient Use Efficiency

- Touch on fertilizer management
Nitrogen, why is it important?

• It makes the crop grow and turn green………Right?
 – Growing and turning green are consequences of how the plant uses Nitrogen

• Nitrogen is a major component of ALL amino acids
 – Amino Acids are building blocks of proteins and enzymes
 – Life could not exist without the biochemical reactions mitigated by the proteins and enzymes.
Nitrogen, why is it important?

- 78% of the atmosphere is nitrogen (N$_2$)
 - Plants cannot use N$_2$

 - Nitrogen must be converted to a useable form
 - Requires a lot of energy input for conversion
 - Lightning
 - Symbiotic relationships
 - Electricity or Fossil fuel

 - Ammonium (NH$_4^+$) and nitrate (NO$_3^-$)
 - Primary N species used by agronomic crops
 - Absorption and assimilation are different
Nitrogen Absorption and Assimilation

- Root cells
 - Inside has negative charge compared to outside
 - Attracts cations (+ charged molecules…. \(\text{NH}_4^+ \))
 - Repels anions (- charged molecules……\(\text{NO}_3^- \))
 - Inside has higher concentration of nitrate compared to outside.
 - Nitrate tends to want to diffuse out and not in cell
 - Together: electrochemical potential gradient.
 - Down hill gradient for \(\text{NH}_4^+ \)
 - Up hill gradient for \(\text{NO}_3^- \)
Nitrogen Absorption and Assimilation

• Ammonium (NH$_4^+$) absorption and assimilation
 – Absorption is almost a passive uptake
 • Downhill electrochemical potential gradient
 • Very little energy input
 – Must maintain electrochemical potential gradient
 • Energy input to maintain the gradient
 – NH$_4^+$ is toxic to the plant at relatively low concentrations
 • Carbohydrates sent to roots to assimilate NH$_4^+$ immediately.
 • Assimilated NH$_4^+$ is transported throughout plant and converted
to amino acids, proteins, and enzymes
Nitrogen Absorption and Assimilation

• Nitrate (NO$_3^-$) absorption and assimilation
 – Absorption is an active uptake process
 • Uphill electrochemical potential gradient
 • Requires substantial energy
 – NO$_3^-$ can be transported and stored in the plant
 • not toxic
 • Stored in roots or above ground plant parts
 – NO$_3^-$ must be reduced to NH$_4^+$ before it can be assimilated
 • Requires substantial energy
 • NH$_4^+$ assimilated as before
Nitrogen Absorption and Assimilation

• Where does that energy come from?
 – Photosynthesis
 • Sun energy captured in chloroplasts
 • Converts CO₂ and H₂O to carbohydrates (energy captured in carbon bonds).
 – Respiration
 • Carbohydrates translocated to root (other plant parts)
 • Carbohydrate plus O₂ produces CO₂ and H₂O
 – Energy released as carbon bonds break
Nitrogen Management

• The soil complexity eliminates simplicity of nutrient management.

• For some, N management simply means how much fertilizer to apply, how to apply it, when to apply it, and where to apply it.
 – We could talk about this
 • This information is readily available
 • Extension, News articles, local fertilizer dealer etc.

• I want to take this talk to a little higher level
 – 10,000 ft level
Nitrogen Use Efficiency (NUE)

- The goal of most nutrient management specialists and researchers:
 - Maximize the effectiveness of the nitrogen that is available to the crop.
 - We call this, Nitrogen Use Efficiency (NUE)

- Maximize NUE!!!
 - Maximize returns for inputs
 - Dollars
 - Resource Use
 - Minimize risks to the environment
Nitrogen Use Efficiency (NUE)

- Many definitions of NUE
 - Depends on who is evaluating NUE
 - Overall NUE is composed of several different components.
 - Each component offers different pieces of information
 - Can be used for different interpretations and meanings.
 - Allows us to study different components of a complex system.
 - If someone uses this term, ask them to define it.
Nitrogen Use Efficiency (NUE)...as I am using it.

\[\text{NUE} = \text{N Agronomic Eff.} \times \text{N Uptake Eff.} \]

N Agronomic Efficiency: lbs. grain produced / lbs. N uptake

N Uptake Efficiency: lbs N accumulated / lbs. N available

\[\text{NUE} = \text{lbs. grain produced} / \text{lbs. N available} \]
Nitrogen Use Efficiency

• Agronomic Efficiency
 – Lb. of grain produced per lb. of N accumulated

• Combines elements of N accumulation and remobilization and their effects on dry matter accumulation and remobilization.

• Too complicated for a 30 minute general talk
 – Production efficiency
 – Remobilization/translocation efficiency
 – Accumulation efficiency before anthesis and after anthesis
Nitrogen Agronomic Efficiency in Corn

Adapted from Long-term continuous corn and nitrogen fertilizer effects on productivity and soil properties, Bundy, Andraski, Ruark, and Peterson. 2011. Agron. J. 103:1346-1351

Another source: Nitrogen use efficiency of corn increased from about 30 lbs. of grain per lbs. of nitrogen in 1960 to 60+ lbs. grain per lbs. of nitrogen in 2006.

Other sources indicate yields have increased about 2.2 bu. Ac$^{-1}$ yr$^{-1}$ will N rates have remained relatively static or perhaps decreased.
Nitrogen Agronomic Efficiency

Why is the Agronomic Efficiency increasing?

- At the field level
 - Better Hybrids/Varieties
 - Less stress from pests
 - Stacked traits
 - Better pesticides and pesticide management
 - Better agronomic cultural practices
 - Maybe some environmental issues?

- Appears to be happening in several crops
 - Corn
 - HRSW
 - Sugar Beets
Nitrogen Agronomic Efficiency

- Regardless of the reason, it seems to be happening
 - People are nervous about it.

 - **Question current N guidelines**
 - Want to increase N fertilizer applications

 - **We must maintain vigilance with continued Nitrogen research**
 - Things change over time
 - Principals probably remain the same
 - Their application to real world situations may change

 - **Vulnerable to sales pitches with no or shaky research data.**
 - A pitch with no data…..is an untested hypothesis!
Nitrogen Uptake Efficiency

• Most nutrient management specialist, regardless of specific role, work on this component of NUE.

• How do we maximize, or optimize, the uptake of nitrogen into the crop?
 – Crop gets it Nitrogen from:
 • Leaves…….foliar absorption
 • Roots…… this talk will focus on this part
 – Uptake Efficiency relates to uptake efficiency of available N
Nitrogen Uptake Efficiency

• Where does the crop get its nitrogen?
 – Residual soil nitrate
 • Estimated by a soil test
 – Mineralization of organic N to inorganic N
 • Very difficult to predict
 • Depends on:
 – Moisture, temperature, oxygen, amount and type of organic matter, time
 – Fertilizer
 • Manure (more difficult to estimate)
 • Commercial fertilizer (known N content and availability)
Nitrogen Uptake Efficiency

• Fertilizer management offers us the best opportunity to manage nitrogen
 – We can manage:
 • Rate
 • Timing
 • Placement
 • Source
 • Summarized into The 4 Rs:
 – Right Source, Right rate, Right Time, Right Place

• We want to maximize the Recovery of Fertilizer Nitrogen
Fertilizer Recovery Efficiency (FRE)

• The goal of Fertilizer management:
 – Maximize Fertilizer Recovery Efficiency (FRE)

• Two ways to study FRE

 1. ^{15}N (fertilizer with a chemical isotope of N)
 • Can apply fertilizer with enriched or depleted ^{15}N isotope relative to natural
 • Evaluate N in plant for enrichment or depletion of ^{15}N.

 2. Difference Method
 • ($\text{lbs. N (fert)} - \text{lbs. N (check)})/\text{N applied}$
 • Apparent Fertilizer Recovery Efficiency
Apparent Nitrogen Fertilizer Recovery in HRSW

Combined data from 4 Hard Red Spring Wheat Varieties. Sims and Wiersma, 2011
Nitrogen Fertilizer Recovery

• World wide: 33% of fertilizer is recovered
• What happens to that not recovered?
 – Measured as residual nitrate-N in soil test
 – Immobilized: converted from inorganic N to organic N
 • Some will remain in the labile organic N pool
 – Unaccounted for
 • Many trials do N balance using either Difference or 15N
 – Frequently cannot account for 20 – 30% of fertilizer N
 – Leached below sampling zone?
 – Denitrification?
 – Volatilization (from soil surface and the plant)?
From Research to Recommendation

• Intensive research efforts on many subcomponents of:
 – Agronomic Efficiency
 – Uptake Efficiency

• Recommendations
 – Apply smaller pieces from the intensive research
 – Expand them to the broader picture
 – Nitrogen Utilization Efficiency
 • Managed Nitrogen to produced the greatest amount of product
 • Optimize Profit and Resource Utilization
 • Minimize Risk to the Environment
 – Develop Best Management Practices (BMPs)
Nitrogen uptake and Distribution in Corn

230 bushel Ac\(^{-1}\) corn crop

Adapted from Ross Bender, Corn Nutrient uptake and partitioning, Illinois Crop Physiology, University of Illinois. http://cropphysiology.Cropsci.illinois.edu/research/Nutrient_uptake.html
Applied N vs N uptake

- The longer nitrate/ammonium is in the soil, the more vulnerable it is to loss.
- Manage N fertilizer to reduce its exposure to potential losses.

Adapted from Nitrogen Fertilization Of Corn, Penn State Extension Agronomy Facts 12.
http://extension.psu.edu/cmeg/facts/agronomy-facts-12
• How do we protect the N during that vulnerable period?

• What are the risks?
 • Leaching
 • Denitrification
 • Volatilization
 • Immobilization

• Use BMPs in terms of source, rate, and timing of applications
 • Consider your soil, location and climate
 • Soil Test
 • Adequate soil incorporation
 • Spring N applications
 • Fall applications:
 • < 50°F temps
 • Ammonical Fertilizers
 • Urease or Nitrification inhibitors
 • Split applications
 • Applies N at beginning of rapid uptake phase
In-Season N in HRSW

<table>
<thead>
<tr>
<th>N timing</th>
<th>Grain yld</th>
<th>Test Wt.</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bu/ac</td>
<td>Lbs/bu</td>
<td>%</td>
</tr>
<tr>
<td>Preplant</td>
<td>59.8</td>
<td>60.5</td>
<td>15.6</td>
</tr>
<tr>
<td>Preplant+Postplant</td>
<td>57.4</td>
<td>60.7</td>
<td>15.3</td>
</tr>
<tr>
<td>Postplant</td>
<td>59.1</td>
<td>60.7</td>
<td>15.1</td>
</tr>
<tr>
<td>Lsd (0.05)</td>
<td>NS</td>
<td>NS</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- 100 lbs. N: all preplant was urea incorporated prior to plant; all postplant was 28% through stream nozzles. Preplant + Post plant: 50:50
- Consistent with earlier work in NW Minnesota (Lamb and Rehm)
- In-season N application: Must have moisture in the application zone for N to be effective

Endres, Schatz, and Maine. 2005. HRS wheat variety response to N application timing and seeding rate. www.ag.ndsu.edu/archive/carringt/05data
In-Season N in Corn

<table>
<thead>
<tr>
<th>Time of Application</th>
<th>Year/Site</th>
<th>1991</th>
<th>1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preplant N</td>
<td>Waseca Co.</td>
<td>84</td>
<td>77107.0</td>
</tr>
<tr>
<td>--- N rate (lbs N /Ac)</td>
<td>Blue Earth Co.</td>
<td>143</td>
<td>144</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
<td>161</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>90</td>
<td>158</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>165</td>
<td>157</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>182</td>
<td>153</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advantage of Split-N</td>
<td>+11</td>
<td></td>
<td>-11</td>
</tr>
</tbody>
</table>

Rainfall was 56% above normal in 1991

Adapted from Randall et al., 2008. Best management practices for nitrogen use in South-Central Minnesota. Univ. of Minn. Extension #08554
Summary

• Allot of work has been done on nitrogen
 – Current BMPs reflect our current state of knowledge

• Still more to do.
 – Ever changing dynamic of our crop production system

• Must always be thinking about:
 – Grower profitability
 – Resource utilization
 – Environmental preservation/protection